Exercise 2.2 Inverse Trigonometric Functions Class 12 Maths

Topics/Questions discussed in this video:

00:00:00 Introduction for inverse trigonometry identities

00:03:34 Derivation of all inverse trigonometric identities

Prove the following:

00:15:14 NCERT Solutions Exercise 2.2 Question 1 3{\sin ^{ - 1}}x = {\sin ^{ - 1}}(3x - 4{x^3}),\,\,x \in \left[ { - \frac{1}{2},\,\,\frac{1}{2}} \right]

00:20:04 NCERT Solutions Exercise 2.2 Question 2 3{\cos ^{ - 1}}x = {\cos ^{ - 1}}(3x - 4{x^3}),\,\,x \in \left[ {\frac{1}{2},\,\,1} \right]

00:21:34 NCERT Solutions Exercise 2.2 Question 3 {\tan ^{ - 1}}\frac{2}{{11}} + {\tan ^{ - 1}}\frac{7}{{24}} = {\tan ^{ - 1}}\frac{1}{2}

00:23:44 NCERT Solutions Exercise 2.2 Question 4 2{\tan ^{ - 1}}\frac{1}{2} + {\tan ^{ - 1}}\frac{1}{7} = {\tan ^{ - 1}}\frac{{31}}{{17}}

Write the following functions in the simplest form:

00:27:54 NCERT Solutions Exercise 2.2 Question 6 {\tan ^{ - 1}}\left( {\frac{1}{{\sqrt {{x^2} - 1} }}} \right),\,\,|x| > 1

00:34:54 NCERT Solutions Exercise 2.2 Question 7 {\tan ^{ - 1}}\left( {\sqrt {\frac{{1 - \cos x}}{{1 + \cos x}}} } \right),\,\,0 < x < \pi

00:36:24 NCERT Solutions Exercise 2.2 Question 8 {\tan ^{ - 1}}\left( {\frac{{\cos x - \sin x}}{{\cos x + \sin x}}} \right),\,\,\frac{{ - \pi }}{4} < x < \frac{{3\pi }}{4}

00:38:54 NCERT Solutions Exercise 2.2 Question 5 {\tan ^{ - 1}}\left( {\frac{{\sqrt {1 + {x^2}}  - 1}}{x}} \right),\,\,x \ne 0

00:42:54 NCERT Solutions Exercise 2.2 Question 9 {\tan ^{ - 1}}\left( {\frac{x}{{\sqrt {{a^2} - {x^2}} }}} \right),\,\,|x|\,\, < \,a

00:45:44 NCERT Solutions Exercise 2.2 Question 10 {\tan ^{ - 1}}\left( {\frac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right),\,\,a > 0;\,\,\frac{{ - a}}{{\sqrt 3 }} < x < \frac{a}{{\sqrt 3 }}

Find the values of each of the following:

00:48:54 NCERT Solutions Exercise 2.2 Question 11 {\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{1}{2}} \right)} \right]

00:50:24 NCERT Solutions Exercise 2.2 Question 12 \cot ({\tan ^{ - 1}}a + {\cot ^{ - 1}}a)

00:51:04 NCERT Solutions Exercise 2.2 Question 13 \tan \frac{1}{2}\left[ {{{\sin }^{ - 1}}\frac{{2x}}{{1 + {x^2}}} + {{\cos }^{ - 1}}\frac{{1 - {y^2}}}{{1 + {y^2}}}} \right],\,\,|x| < 1,\,\,y > 0\,\,{\rm{and}}\,\,xy < 1

00:52:54 NCERT Solutions Exercise 2.2 Question 14 If \sin \left( {{{\sin }^{ - 1}}\frac{1}{5} + {{\cos }^{ - 1}}x} \right) = 1, then find the value of x.

00:54:44 NCERT Solutions Exercise 2.2 Question 15 If {\tan ^{ - 1}}\frac{{x - 1}}{{x - 2}} + {\tan ^{ - 1}}\frac{{x + 1}}{{x + 2}} = \frac{\pi }{4} then find the value of x.

Find the values of each of the expressions in Exercises 16 to 18.

00:59:54 NCERT Solutions Exercise 2.2 Question 16 {\sin ^{ - 1}}\left( {\sin \frac{{2\pi }}{3}} \right)

01:01:24 NCERT Solutions Exercise 2.2 Question 17 {\tan ^{ - 1}}\left( {\tan \frac{{3\pi }}{4}} \right)

01:03:04 NCERT Solutions Exercise 2.2 Question 19 {\cos ^{ - 1}}\left( {\cos \frac{{7\pi }}{6}} \right)

(A) \frac{{7\pi }}{6}
(B) \frac{{5\pi }}{6}
(C) \frac{\pi }{3}
(D) \frac{\pi }{6}

01:04:24 NCERT Solutions Exercise 2.2 Question 20 \sin \left( {\frac{\pi }{3} - {{\sin }^{ - 1}}\left( { - \frac{1}{2}} \right)} \right)

(A) \frac{1}{2}
(B) \frac{1}{3}
(C) \frac{1}{4}
(D) 1

01:05:34 NCERT Solutions Exercise 2.2 Question 21 {\tan ^{ - 1}}\sqrt 3  - {\cot ^{ - 1}}\left( { - \sqrt 3 } \right)

(A) \pi
(B) - \frac{\pi }{2}
(C) 0
(D) 2\sqrt 3

01:07:04 NCERT Solutions Exercise 2.2 Question 18 \tan \left( {{{\sin }^{ - 1}}\frac{3}{5} + {{\cot }^{ - 1}}\frac{3}{2}} \right)

Agam Sir

Agam Sir

Teacher

Ashish Kumar a.k.a Agam Sir has vast experience of 12+ years of teaching Mathematics and Physics. He has skills (academic and vocational) that go with working alongside people, especially young people, their parent(s) and the institutes that works with him. He always seek to be an agent of positive change and progression, a mentor/ trainer/ educator for learners/students, seeing that their needs are ideally met.