Questions Discussed:
NCERT Exercise 5.2
Differentiate the functions with respect to x in Exercise 1 to 8
Question 1. { \displaystyle \sin(x^2 + 5) }
Question 2. { \displaystyle \cos (\sin x) }
Question 3. { \displaystyle \sin (ax + b) }
Question 4. { \displaystyle \sec (\tan \sqrt{x}) }
Question 5. { \displaystyle \frac{\sin(ax + b)}{\cos(cx + d)} }
Question 6. { \displaystyle \cos x^3 . \sin^2(x^5) }
Question 7. { \displaystyle 2\sqrt{cot(x^2)} }
Question 8. { \displaystyle \cos(\sqrt{x}) }
NCERT Examples
Example 26: Find the derivative of f given by { \displaystyle f(x) = \sin^{-1}x } assuming it exists.
Example 27: Find the derivative of f given by { \displaystyle f(x) = \tan^{-1}x } assuming it exists.
NCERT Exercise 5.3
Find { \displaystyle \frac{dy}{dx} } in the following:
Question 1: { \displaystyle 2x + 3y = \sin x }
Question 2: { \displaystyle 2x + 3y = \sin y }
Question 3: { \displaystyle ax + by^2 = \cos y }
Question 4: { \displaystyle xy + y^2 = tanx + y }
Question 5: { \displaystyle x^2 + xy + y^2 = 100 }
Question 6: { \displaystyle x^3 + x^2y + xy^2 + y^3 = 81 }
Question 7: { \displaystyle \sin^2 y + \cos xy = \kappa }
Question 8: { \displaystyle \sin^2 x + \cos^2 y = 1 }
Question 9: { \displaystyle y = \sin^{-1} \left ( \frac{2x}{1 + x^2} \right ) }
Question 10: { \displaystyle y = \tan^{-1} \left ( \frac{3x - x^3}{1 - 3x^2} \right ) } , { \displaystyle -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} }
Question 11: { \displaystyle y = \cos^{-1} \left ( \frac{1 - x^2}{1 + x^2} \right ) } , { \displaystyle 0 < x < 1 }
Question 12: { \displaystyle y = \sin^{-1} \left ( \frac{1 - x^2}{1 + x^2} \right ) } , { \displaystyle 0 < x < 1 }
Question 13: { \displaystyle y = \cos^{-1} \left ( \frac{2x}{1 + x^2} \right ) } , { \displaystyle -1 < x < 1 }
Question 14: { \displaystyle y = \sin^{-1} \left ( 2x \sqrt{1-x^2} \right ) } , { \displaystyle -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} }
Question 15: { \displaystyle y = \sec^{-1} \left ( \frac{1}{2x^2 - 1} \right ) } , { \displaystyle 0 < x < \frac{1}{\sqrt{2}} }