Continuity and Differentiability Part - 2

Continuity and Differentiability Part 2 is a Class 12 Math course that delves into exponential and logarithmic function differentiation, second-order derivatives, implicit and explicit functions, derivatives of composite and implicit functions, derivatives of inverse trigonometric functions, parametric functions, and covers exercises from NCERT Exercise 5.2 to Miscellaneous. This course enhances understanding of calculus, develops problem-solving skills, and equips students to differentiate complex functions, solve implicit equations, apply the chain rule, differentiate inverse trigonometric functions, analyze parametric functions, and tackle exercises from NCERT Exercise 5.2 to Miscellaneous.

6 hours 28 minutes Course Duration
English Syllabus medium
Hindi + English Explanation
Not Logged in Enrollment status
The course duration is an approximation of the total length (duration) of all videos in the course, calculated automatically. Please report any errors to MathYug Support for prompt correction.

Course Content

Lecture – 1

00:45:23

Topics Discussed:

  • Implicit and Explicit Functions
  • Derivatives of composite functions
  • Derivatives of implicit functions
  • Derivatives of inverse trigonometric functions

Questions Discussed:

NCERT Exercise 5.2

Differentiate the functions with respect to x in Exercise 1 to 8

Question 1. { \displaystyle \sin(x^2 + 5) }

Question 2. { \displaystyle \cos (\sin x) }

Question 3. { \displaystyle \sin (ax + b) }

Question 4. { \displaystyle \sec (\tan \sqrt{x}) }

Question 5. { \displaystyle \frac{\sin(ax + b)}{\cos(cx + d)} }

Question 6. { \displaystyle \cos x^3 . \sin^2(x^5) }

Question 7. { \displaystyle 2\sqrt{cot(x^2)} }

Question 8. { \displaystyle \cos(\sqrt{x}) }

NCERT Examples

Example 26: Find the derivative of f given by { \displaystyle f(x) = \sin^{-1}x } assuming it exists.

Example 27: Find the derivative of f given by { \displaystyle f(x) = \tan^{-1}x } assuming it exists.

NCERT Exercise 5.3

Find { \displaystyle \frac{dy}{dx} } in the following:

Question 1: { \displaystyle 2x + 3y = \sin x }

Question 2: { \displaystyle 2x + 3y = \sin y }

Question 3: { \displaystyle ax + by^2 = \cos y }

Question 4: { \displaystyle xy + y^2 = tanx + y }

Question 5: { \displaystyle x^2 + xy + y^2 = 100 }

Question 6: { \displaystyle x^3 + x^2y + xy^2 + y^3 = 81 }

Question 7: { \displaystyle \sin^2 y + \cos xy = \kappa }

Question 8: { \displaystyle \sin^2 x + \cos^2 y = 1 }

Question 9: { \displaystyle y = \sin^{-1} \left ( \frac{2x}{1 + x^2} \right ) }

Question 10: { \displaystyle y = \tan^{-1} \left ( \frac{3x - x^3}{1 - 3x^2} \right ) } , { \displaystyle -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} }

Question 11: { \displaystyle y = \cos^{-1} \left ( \frac{1 - x^2}{1 + x^2} \right ) } , { \displaystyle 0 < x < 1 }

Question 12: { \displaystyle y = \sin^{-1} \left ( \frac{1 - x^2}{1 + x^2} \right ) } , { \displaystyle 0 < x < 1 }

Question 13: { \displaystyle y = \cos^{-1} \left ( \frac{2x}{1 + x^2} \right ) } , { \displaystyle -1 < x < 1 }

Question 14: { \displaystyle y = \sin^{-1} \left ( 2x \sqrt{1-x^2} \right ) } , { \displaystyle -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} }

Question 15: { \displaystyle y = \sec^{-1} \left ( \frac{1}{2x^2 - 1} \right ) } , { \displaystyle 0 < x < \frac{1}{\sqrt{2}} }

Lecture – 2

01:32:34

Topics Discussed:

  • Exponential function differentiation
  • Logarithmic functions differentiation

Questions Discussed:

NCERT Exercise 5.4

Differentiate the following w.r.t. { \displaystyle x }

Question 1. { \displaystyle \frac{e^x}{\sin x} }

Question 2. { \displaystyle e^{\sin^{-1}x} }

Question 3. { \displaystyle e^{x^3} }

Question 4. { \displaystyle \sin (\tan^{-1} e^{-x}) }

Question 5. { \displaystyle \log (\cos e^x) }

Question 6. { \displaystyle e^x + e^{x^2} + ... + e^{x^5} }

Question 7. { \displaystyle \sqrt{e^{\sqrt{x}}}, x > 0 }

Question 8. { \displaystyle \log (\log x), x > 1 }

Question 9. { \displaystyle \frac{\cos x}{\log x}, x > 0 }

Question 10. { \displaystyle \cos(\log x + e^x), x > 0 }

NCERT Exercise 5.5

Differentiate the functions given in Exercises 1 to 11 w.r.t. { \displaystyle x }

Question 1. { \displaystyle \cos x. \cos 2x. \cos 3x }

Question 2. { \displaystyle \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} }

Question 3. { \displaystyle (\log x)^{\cos x} }

Question 4. { \displaystyle x^x - 2^{\sin x} }

Question 5. { \displaystyle (x+3)^2 . (x+4)^3 . (x+5)^4 }

Question 6. { \displaystyle \left ( x + \frac{1}{x} \right )^x + x^{\left ( 1 + \frac{1}{x} \right )} }

Question 7. { \displaystyle (\log x)^x + x^{\log x} }

Question 8. { \displaystyle (\sin x)^x + \sin^{-1} \sqrt{x} }

Question 9. { \displaystyle x^{\sin x} + (\sin x)^{\cos x} }

Question 10. { \displaystyle x^{x \cos x} + \frac{x^2+1}{x^2-1} }

Question 11. { \displaystyle (x \cos x)^x + (x \sin x)^{\frac{1}{x}} }

Lecture – 3

01:38:50

Topics Discussed:

  • Parametric Functions

Questions Discussed:

NCERT Exercise 5.5

Find { \displaystyle \frac{dy}{dx} } of the functions given in Exercises 12 to 15

Question 12. { \displaystyle x^y + y^x = 1 }

Question 13. { \displaystyle y^x = x^y }

Question 14. { \displaystyle (\cos x)^y = (\cos y)^x }

Question 15. { \displaystyle xy = e^{(x-y)} }

Question 16. Find the derivative of the function given by { \displaystyle f(x)=(1+x)(1+x^2) } { \displaystyle (1+x^4)(1+x^8) } and hence find { \displaystyle f'(1) }

Question 17. Differentiate { \displaystyle (x^2 - 5x + 8)(x^3 + 7x + 9) } in three ways mentioned below:
(i) by using product rule
(ii) by expanding the product to obtain a single polynomial.
(iii) by logarithmic differentiation.
Do they all give the same answer?

Question 18. If { \displaystyle u, v } and { \displaystyle w } are functions of { \displaystyle x } , then show that
{ \displaystyle \frac{d}{dx} (u.v.w) = \frac{du}{dx} v.w } + { \displaystyle u . \frac{dv}{dx} . w + u . v \frac{dw}{dx} }
in two ways - first by repeated application of product rule, second by logarithmic differentiation.

NCERT Exercise 5.6

If { \displaystyle x } and { \displaystyle y } are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find { \displaystyle \frac{dy}{dx} } .

Question 1. { \displaystyle x = 2at^2, y = at^4 }

Question 2. { \displaystyle x = a\cos \theta, y = b \cos \theta }

Question 3. { \displaystyle x = \sin t, y = \cos 2t }

Question 4. { \displaystyle x = 4t, y = \frac{4}{t} }

Question 5. { \displaystyle x = \cos \theta - \cos 2\theta } , { \displaystyle y = \sin \theta - \sin 2\theta }

Question 6. { \displaystyle x = a (\theta - \sin \theta) } , { \displaystyle y = a(1 + \cos \theta) }

Question 7. { \displaystyle x = \frac{\sin^{3}t}{\sqrt{\cos 2t}} } , { \displaystyle y = \frac{\cos^{3}t}{\sqrt{\cos 2t}} }

Question 8. { \displaystyle x = a \left ( \cos t + \log \tan \frac{t}{2} \right ) } , { \displaystyle y = a \sin t }

Question 9. { \displaystyle x = a \sec \theta, y = b \tan \theta }

Question 10. { \displaystyle x = a(\cos \theta + \theta \sin \theta) } , { \displaystyle y = a(\sin \theta - \theta \cos \theta) }

Question 11. If { \displaystyle x = \sqrt{a^{\sin^{-1}t}} } , { \displaystyle y = \sqrt{a^{\cos^{-1}t}} } , show that { \displaystyle \frac{dy}{dx} = -\frac{y}{x} }

Lecture – 6

00:56:41

Questions Discussed:

NCERT Miscellaneous Exercise

Question 12. Find { \displaystyle \frac{dy}{dx} } , if { \displaystyle y = 12 (1 - \cos t) } , { \displaystyle x = 10 (t- \sin t) } , { \displaystyle -\frac{\pi}{2} < t < \frac{\pi}{2} }

Question 13. Find { \displaystyle \frac{dy}{dx} } , if { \displaystyle y = \sin^{-1}x + \sin^{-1}\sqrt{1 - x^2} } , { \displaystyle 0 < x < 1 }

Question 14. If { \displaystyle x\sqrt{1 + y} + y\sqrt{1 + x} = 0 } , for, { \displaystyle -1 < x < 1 } , prove that { \displaystyle \frac{dy}{dx} = - \frac{1}{(1 + x)^2} }

Question 15. If { \displaystyle (x - a)^2 + (y - b)^2 = c^2 } , for some { \displaystyle c > 0 } , prove that { \displaystyle \frac{\left [ 1 + \left ( \frac{dy}{dx} \right )^2 \right ]^{\frac{3}{2}} }{\frac{d^2y}{dx^2}} } is a constant independent of { \displaystyle a } and { \displaystyle b } .

Question 16. If { \displaystyle \cos y = x \cos (a + y) } , with { \displaystyle \cos a \ne \pm 1 } , prove that { \displaystyle \frac{dy}{dx} = \frac{\cos^2(a + y)}{\sin a}} .

Question 17. If { \displaystyle x = a(\cos t + t \sin t) } and { \displaystyle y = a (\sin t - t \cos t)} , find { \displaystyle \frac{d^2y}{dx^2} } .

Question 19. Using mathematical induction prove that { \displaystyle \frac{d}{dx}(x^n) = nx^{n-1} } for all positive integers { \displaystyle n } .

Question 20. Using the fact that { \displaystyle \sin (A + B) = \sin A \cos B } { \displaystyle + \cos A \sin B } and the differentiation, obtain the sum formula for cosines.

Question 22. If { \displaystyle y = \begin{vmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{vmatrix} } , prove that { \displaystyle \frac{dy}{dx} = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{vmatrix} } .

Question 23. If { \displaystyle y = e^{a \cos^{-1} x} } , { \displaystyle -1 \le x \le 1 } , show that { \displaystyle (1 - x^2)\frac{d^2y}{dx^2} } { \displaystyle - x \frac{dy}{dx} - a^2y = 0 } .