Continuity and Differentiability Part - 1

This course is Part 1 of Chapter 5 Continuity and Differentiability of Class 12 Maths. In this course, you will learn about the concepts of continuity and differentiability of functions and their properties. You will also learn how to check if a function is continuous or differentiable at a point or in an interval using limits. You will solve problems based on finding the values of unknown constants that make a function continuous or differentiable. You will also examine some functions for continuity and differentiability using algebraic and graphical methods. This course covers questions from NCERT exercise, NCERT Examples, NCERT Exemplar, Board's question bank and other books from private publishers.

6 hours 11 minutes Course Duration
English Syllabus medium
Hindi + English Explanation
Not Logged in Enrollment status
The course duration is an approximation of the total length (duration) of all videos in the course, calculated automatically. Please report any errors to MathYug Support for prompt correction.

Course Content

Lecture – 1

01:09:16

Questions Discussed:

Discuss the continuity of following functions:

Question 1. { \displaystyle f(x)= \begin{cases} 2x+3, & \text{ if } x\le 2 \\ 2x-3, & \text{ if } x>2 \end{cases} }

Question 2. { \displaystyle f(x)= \begin{cases} \frac{|x|}{x}, & \text{ if } x\ne 0 \\ 0, & \text{ if } x = 0 \end{cases} }

Question 3. { \displaystyle f(x)= \begin{cases} x+1, & \text{ if } x\ge 1 \\ {{x}^{2}}+1, & \text{ if } x < 1 \end{cases} }

Question 4. { \displaystyle f(x)= \begin{cases} {{x}^{10}}-1, & \text{ if } x\le 1 \\ {{x}^{2}}, & \text{ if } x>1 \end{cases} }

Question 5. { \displaystyle f(x)= \begin{cases} \frac{x}{|x|}, & \text{ if } x<0 \\ -1, & \text{ if } x\ge 0 \end{cases} }

Question 6. { \displaystyle f(x)= \begin{cases} {{x}^{3}}-3, & \text{ if } x\le 2 \\ {{x}^{2}}+1, & \text{ if } x>2 \end{cases} }

Question 7. { \displaystyle f(x)= \begin{cases} x+5, & \text{ if } x\le 1 \\ x-5, & \text{ if } x>1 \end{cases} }

Question 8. { \displaystyle f(x)= \begin{cases} |x|+3, & \text{ if } x \le -3 \\ -2x, & \text{ if } -3 < x < 3 \\ 6x+2, & \text{ if } x \ge 3 \end{cases} }

Question 9. { \displaystyle f(x)= \begin{cases} 3, & \text{ if } 0\le x\le 1 \\ 4, & \text{ if } 1 < x < 3 \\ 5, & \text{ if } 3\le x\le 10 \end{cases} }

Question 10. { \displaystyle f(x)= \begin{cases} 2x, & \text{ if } x<0 \\ 0, & \text{ if } 0\le x\le 1 \\ 4x, & \text{ if } x>1 \end{cases} }

Question 11. { \displaystyle f(x)= \begin{cases} -2, & \text{ if } x\le -1 \\ 2x, & \text{ if } -1 < x \le 1 \\ 2, & \text{ if } x > 1 \end{cases} }

Question 12. { \displaystyle f(x)= \begin{cases} \frac{{{e}^{x}}-1}{\log (1+2x)}, & x\ne 0 \\ 7, & x=0 \end{cases} }

Question 13. { \displaystyle f(x)= \begin{cases} \frac{\sin x}{x}, & \text{ if } x<0 \\ x+1, & \text{ if } x\ge 0 \end{cases} }

Question 14. { \displaystyle f(x)= \begin{cases} {{x}^{2}}\sin \frac{1}{x}, & \text{ if } x\ne 0 \\ 0, & \text{ if } x=0 \end{cases} }

Question 15. { \displaystyle f(x)= \begin{cases} \sin x-\cos x, & \text{ if } x\ne 0 \\ -1, & \text{ if } x=0 \end{cases} }

Question 16. { \displaystyle f(x)= \begin{cases} \frac{\sin 3x}{\tan 2x}, & x < 0 \\ \frac{3}{2}, & x = 0 \\ \frac{\log (1+3x)}{{{e}^{2x}}-1}, & x > 0 \end{cases} }

Lecture – 2

00:42:48

Questions Discussed:

Find the value k, a, b, c, or any other unknown, if following functions are continuous:

Question 1. { \displaystyle f(x) = \begin{cases} k{{x}^{2}},& \text{ if } x \le 2 \\ 3,& \text{ if } x > 2 \end{cases} }

Question 2. { \displaystyle f(x) = \begin{cases} kx+1,& \text{ if } x \le \pi \\ \cos x, & \text{ if } x > \pi \end{cases} }

Question 3. { \displaystyle f(x) = \begin{cases} kx+1,& \text{ if } x \le 5 \\ 3x-5, & \text{ if } x > 5 \end{cases} }

Question 4. { \displaystyle f(x) = \begin{cases} \frac{{{x}^{2}}-2x-3}{x+1}, & x\ne -1 \\ k, & x=-1 \end{cases} }

Question 5. { \displaystyle f(x) = \begin{cases} \frac{k\cos x}{\pi -2x}, & \text{ if } x\ne \frac{\pi }{2} \\ 3, & \text{ if } x = \frac{\pi }{2} \end{cases} }

Question 6. { \displaystyle f(x) = \begin{cases} 5,& \text{ if } x\le 2 \\ ax+b,& \text{ if } 2 < x < 10 \\ 21,& \text{ if } x \ge 10 \end{cases} }

Question 7. { \displaystyle f(x) = \begin{cases} \frac{1-\cos 2x}{2{{x}^{2}}}, & x\ne 0 \\ k, & x=0 \end{cases} }

Question 8. { \displaystyle f(x) = \begin{cases} \frac{\log (1+ax)-\log (1-bx)}{x}, & x\ne 0 \\ k, & x=0 \end{cases} }

Question 9. { \displaystyle f(x) = \begin{cases} \frac{{{\sin }^{2}}kx}{{{x}^{2}}}, & x\ne 0 \\ 1, & x=0 \end{cases} }

Question 10. { \displaystyle f(x) = \begin{cases} \frac{1-\cos 4x}{{{x}^{2}}}, & x<0 \\ k, & x=0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & x > 0 \end{cases} }

Question 11. { \displaystyle f(x) = \begin{cases} \frac{x}{|x|+2{{x}^{2}}}, & x\ne 0 \\ k, & x=0 \end{cases} }

Lecture – 6

00:42:05

Questions Discussed:

NCERT Exercise 5.1:

Question 1. Prove that the function { \displaystyle f(x) = 5x – 3 } is continuous at { \displaystyle x = 0 } , at { \displaystyle x = – 3 } and at { \displaystyle x = 5 } .

Question 2.Examine the continuity of the function { \displaystyle f(x) = 2x^2 - 1 } at { \displaystyle x = 3 } .

Question 3.Examine the following functions for continuity.

(a) { \displaystyle f(x) = x - 5 }

(b) { \displaystyle f(x) = \frac { 1 }{ x - 5 }, x \ne 5 }

(c) { \displaystyle f(x) = \frac { x^2 - 25 }{ x + 5 }, x \ne -5 }

(d) { \displaystyle f(x) = | x - 5 | }

Question 4. Prove that the function { \displaystyle f(x) = x^n } is continuous at { \displaystyle x = n } , where n is a positive integer.

Question 5. Is the function f defined by { \displaystyle f(x) = \begin{cases} x, & \text{ if } x \le 1 \\ 5, & \text{ if } x > 1 \end{cases} } continuous at { \displaystyle x = 0 } ? At { \displaystyle x = 1 } ? At { \displaystyle x = 2 } ? .

Question 17. Find the relationship between a and b so that the function f defined by { \displaystyle f(x) = \begin{cases} ax+1, & \text{ if } x \le 3 \\ bx+3, & \text{ if } x > 3 \end{cases} } is continuous at { \displaystyle x = 3 } .

Question 18. for what value of { \displaystyle \lambda } is the function defined by { \displaystyle f(x) = \begin{cases} \lambda {x^2 - 2x}, & \text{ if } x \le 0 \\ 4x+1, & \text{ if } x > 0 \end{cases} } continuous at { \displaystyle x = 0 } ? What about continuity at { \displaystyle x = 1 } ?

Question 20. Is the function defined by { \displaystyle f(x) = x^2 - \sin x + 5 } continuous at { \displaystyle x = \pi } ?