Questions Discussed:
Discuss the continuity of following functions:
Question 1. { \displaystyle f(x)= \begin{cases} 2x+3, & \text{ if } x\le 2 \\ 2x-3, & \text{ if } x>2 \end{cases} }
Question 2. { \displaystyle f(x)= \begin{cases} \frac{|x|}{x}, & \text{ if } x\ne 0 \\ 0, & \text{ if } x = 0 \end{cases} }
Question 3. { \displaystyle f(x)= \begin{cases} x+1, & \text{ if } x\ge 1 \\ {{x}^{2}}+1, & \text{ if } x < 1 \end{cases} }
Question 4. { \displaystyle f(x)= \begin{cases} {{x}^{10}}-1, & \text{ if } x\le 1 \\ {{x}^{2}}, & \text{ if } x>1 \end{cases} }
Question 5. { \displaystyle f(x)= \begin{cases} \frac{x}{|x|}, & \text{ if } x<0 \\ -1, & \text{ if } x\ge 0 \end{cases} }
Question 6. { \displaystyle f(x)= \begin{cases} {{x}^{3}}-3, & \text{ if } x\le 2 \\ {{x}^{2}}+1, & \text{ if } x>2 \end{cases} }
Question 7. { \displaystyle f(x)= \begin{cases} x+5, & \text{ if } x\le 1 \\ x-5, & \text{ if } x>1 \end{cases} }
Question 8. { \displaystyle f(x)= \begin{cases} |x|+3, & \text{ if } x \le -3 \\ -2x, & \text{ if } -3 < x < 3 \\ 6x+2, & \text{ if } x \ge 3 \end{cases} }
Question 9. { \displaystyle f(x)= \begin{cases} 3, & \text{ if } 0\le x\le 1 \\ 4, & \text{ if } 1 < x < 3 \\ 5, & \text{ if } 3\le x\le 10 \end{cases} }
Question 10. { \displaystyle f(x)= \begin{cases} 2x, & \text{ if } x<0 \\ 0, & \text{ if } 0\le x\le 1 \\ 4x, & \text{ if } x>1 \end{cases} }
Question 11. { \displaystyle f(x)= \begin{cases} -2, & \text{ if } x\le -1 \\ 2x, & \text{ if } -1 < x \le 1 \\ 2, & \text{ if } x > 1 \end{cases} }
Question 12. { \displaystyle f(x)= \begin{cases} \frac{{{e}^{x}}-1}{\log (1+2x)}, & x\ne 0 \\ 7, & x=0 \end{cases} }
Question 13. { \displaystyle f(x)= \begin{cases} \frac{\sin x}{x}, & \text{ if } x<0 \\ x+1, & \text{ if } x\ge 0 \end{cases} }
Question 14. { \displaystyle f(x)= \begin{cases} {{x}^{2}}\sin \frac{1}{x}, & \text{ if } x\ne 0 \\ 0, & \text{ if } x=0 \end{cases} }
Question 15. { \displaystyle f(x)= \begin{cases} \sin x-\cos x, & \text{ if } x\ne 0 \\ -1, & \text{ if } x=0 \end{cases} }
Question 16. { \displaystyle f(x)= \begin{cases} \frac{\sin 3x}{\tan 2x}, & x < 0 \\ \frac{3}{2}, & x = 0 \\ \frac{\log (1+3x)}{{{e}^{2x}}-1}, & x > 0 \end{cases} }